

2024年3月5日

S3とQuickSightで作る BIシステム構築の勘所

自己紹介

□隅田 徹(Toru Sumida)

□株式会社スタイルズ

- ▶ AWSを主としたアプリ・インフラ混合チーム所属
- ▶ BIシステムの設計・開発
- ▶ IoTサービスの設計・開発

□好きなAWSサービス

- Amazon QuickSight
- Amazon Athena

本日、お話する内容

□対象

- S3とQuickSightでBIシステムの構築を検討している方
- 既にQuickSightでBIシステムを構築されている方

ロゴール

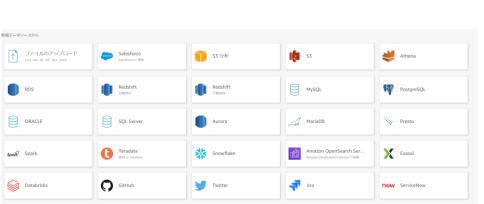
▶ S3とQuickSightでBIシステムを構築する際の勘所を知る

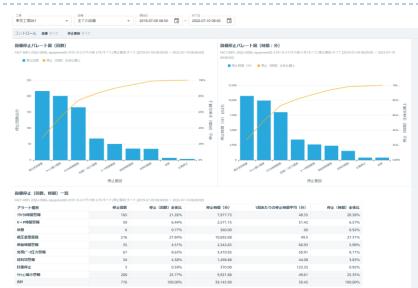
データを大量に貯めているが生かせていない どうやって活用したらいい?

BIシステムを導入する事が解決策の一つです

BIシステムのBIとは

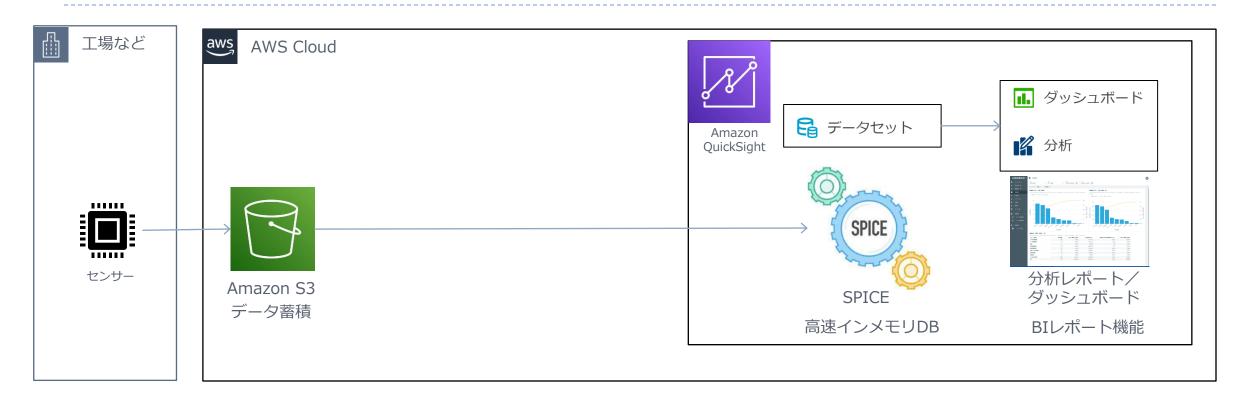
BIとは


- □ビジネスインテリジェンスの略
- □データに基づいた意思決定プロセスを支援すること
- □BIツール
- ▶各種データソース(企業データ)との接続・蓄積
- > データの可視化・オンライン分析
- ▶ ダッシュボード
- > など
- AWSのBIツール Amazon QuickSight



Amazon QuickSightの特徴

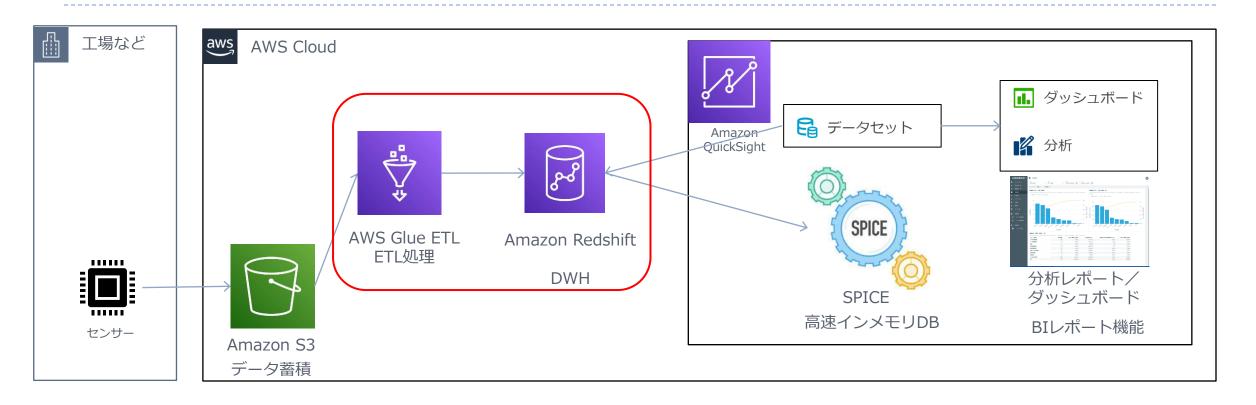
- □美しくインタラクティブなダッシュボード
- □サーバレスアーキテクチャ
- □高速インメモリDB SPICEを内蔵
- ■多様なデータソースへの接続
- □閲覧ユーザの利用料が従量



Style23

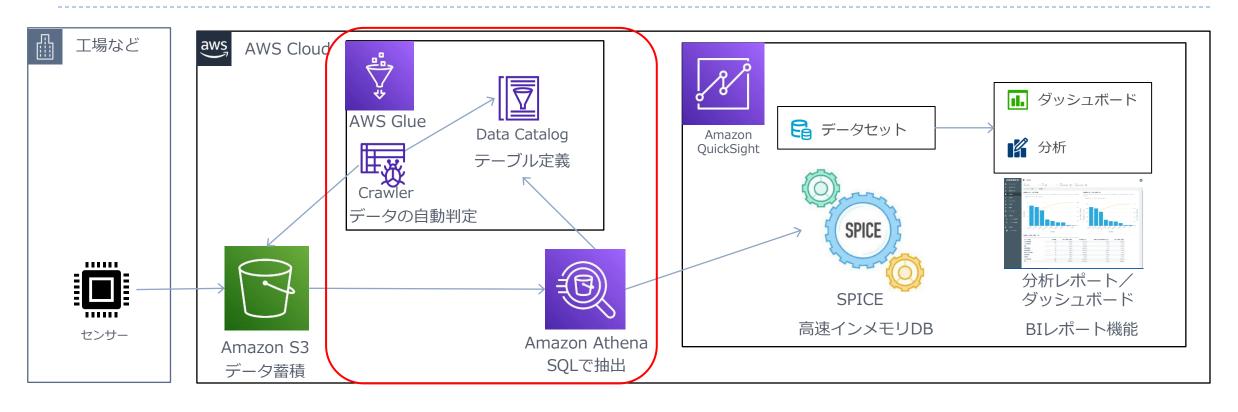
システム構成パターン

最も単純な構成



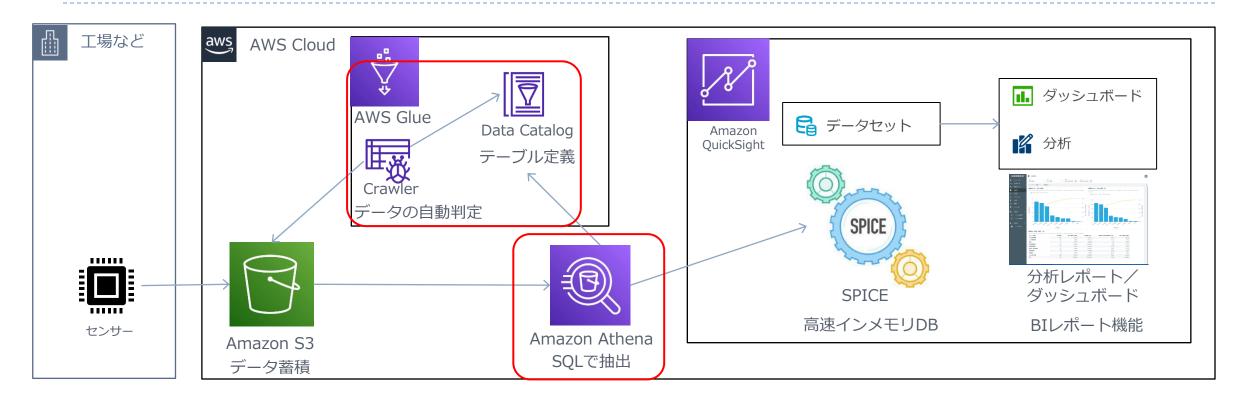
メリット	デメリット			
• 利用するサービスが最小限で構築が簡易	データ追加時は常に全件更新取込時にデータ項目の取捨選択ができない			

ETL·DWH構成



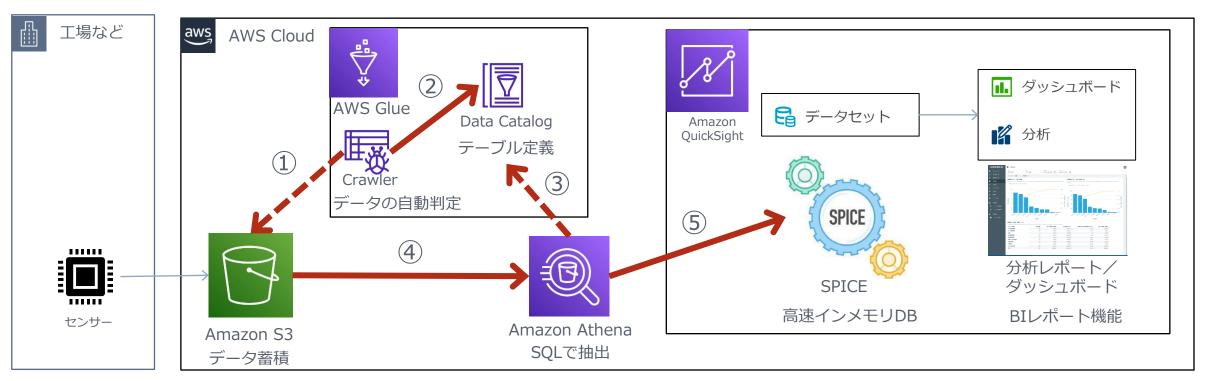
メリット		デメリット		
	リアルタイム分析が可能 複雑なデータ処理にも対応できる	コストが比較的高くなる構築期間が比較的かかる		

バランス構成



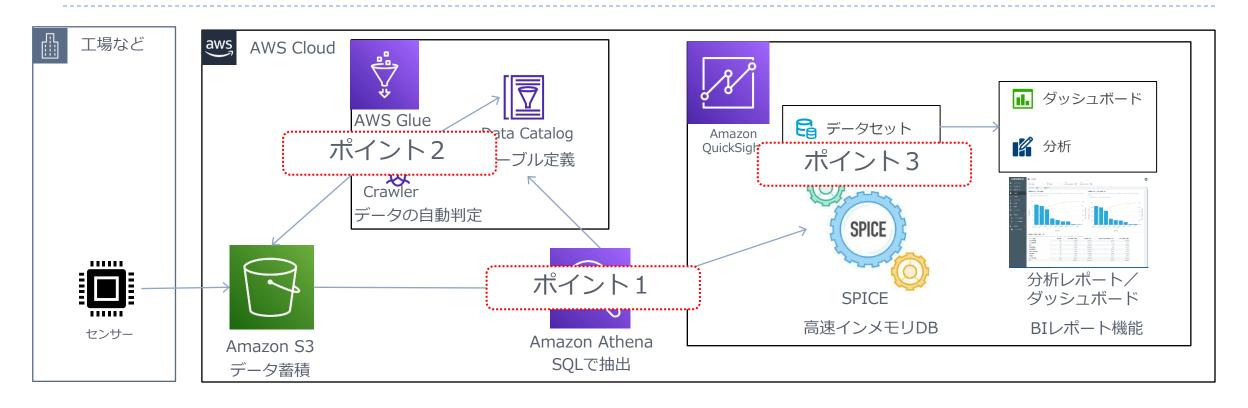
メ	リット	デメリット
•	DWH構成より手軽に構築できる パーティショニングで抽出コストを削減 複雑な処理が必要になったタイミングで Glue ETLを導入することでカバーできる	直接クエリ(リアルタイム参照)には 向いていない

バランス構成 Glue、Athenaの役割



>	リット	デメリット
•	DWH構成より手軽に構築できる パーティショニングで抽出コストを削減 複雑な処理が必要になったタイミングで Glue ETLを導入することでカバーできる	直接クエリ(リアルタイム参照)には 向いていない

バランス構成 データの流れ



- ①S3をクロール
- ②データカタログを作成
- ③データカタログを参照
- ④S3データをSQLで抽出
- ⑤QuickSightのSPICEに書込

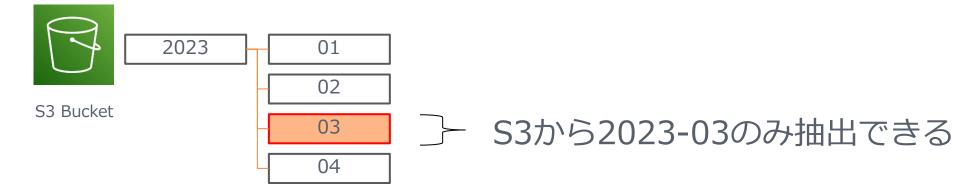
バランス構成 構築時のポイント

ポイント1 Athenaのパーティションニング機能

ポイント2 Glueクローラー利用時の注意点

ポイント3 QuickSightデータセットの参照方式

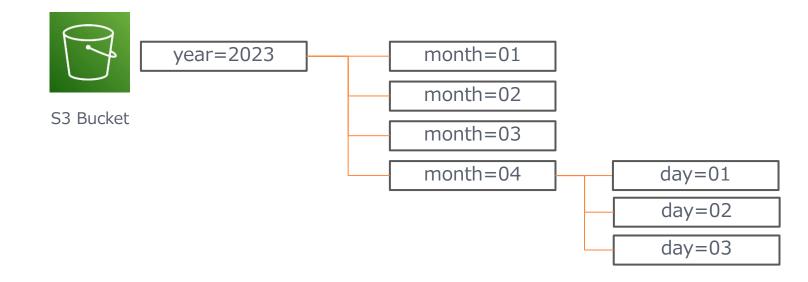
ポイント1 Athenaパーティショニング機能


Athenaパーティショニング機能

- □2023-03のデータを抽出する
- トパーティショニングが有効でない場合

トパーティショニングが有効な場合

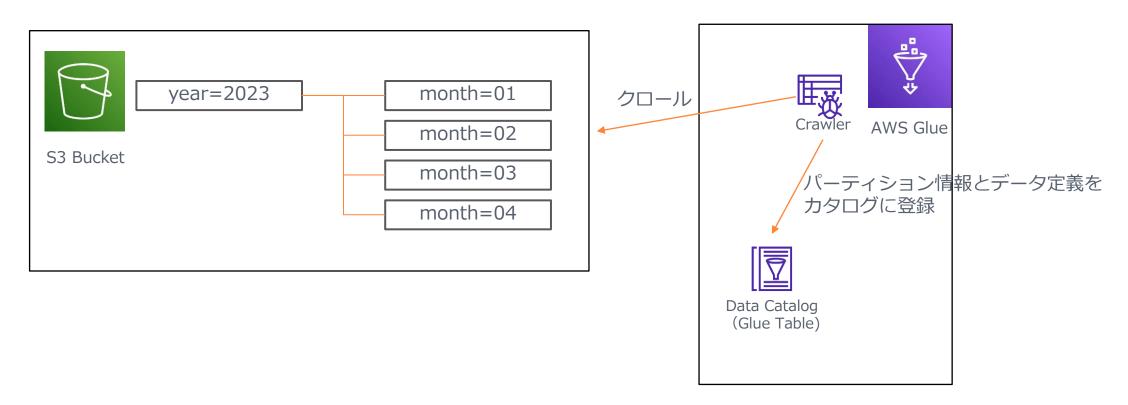
Athenaパーティショニングを利用するためのポイント



□S3のパス設計

S3のパスは「key=val」(Apache Hive 形式)で設計する

Apache Hive形式のパス例:


s3:/stylez-sensor-bucket/year=2023/month=03/day=01/

Athenaパーティショニング情報の登録・更新方法

□ 1. Glueクローラーで定期的にクロールする

■ 2. MSCK REPAIR TABLE コマンドを実行する

Athenaコンソール > MSCK REPAIR TABLE;

Style23

ポイント2 Glueクローラー利用時の注意点

Glue クローラー利用時の注意点

□ HIVE_PARTITION_SCHEMA_MISMATCHエラーの発生

* HIVE PARTITION SCHEMA MISMATCH: There is a mismatch between the table and partition schemas. The types are incompatible and cannot be coerced. The column 'thresholdsensormax' in table 'sampledb.stylez_sensor_bucket' is declared as type 'double', but partition 'year=2024/month=02/day=01' declared column 'thresholdsensormax' as type 'bigint'.

このクエリは、クエリで修飾されていない限り、「sampledb」テータベースに対して実行されました。エラーメッセージを <u>フォーラム</u> 🖸 に投稿するか、クエリ ID: 854c0918-14ba-471f-aba8-becb72944c9a とともに <u>カスタマーサポート</u> 🖸 にお問い合わせく ださい

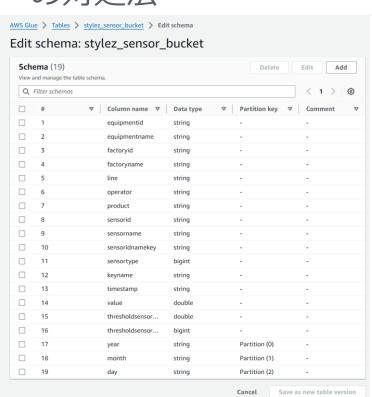
Schema Partitions Indexes Column statistics - new						
Schema (19)						
View and manage the table schema	3.					
Q Filter schemas						
#	▼ Column name	▼ Data type	▼ Partition key	▽		
1	equipmentid	string	-			
2	equipmentname	string	-			
3	factoryid	string	-			
4	factoryname	string	-			
5	line	string	-			
6	operator	string	-			
7	product	string	-			
8	sensorid	string	-			
9	sensorname	string	-			
10	sensoridnamekey	string	-			
11	sensortype	bigint	-			
12	keyname	string	-			
13	timestamp	string	-			
14	value	double	-			
15	thresholdsensormax	double	-			
16	thresholdsensormin	bigint	-			
17	year	string	Partition (0)			
18	month	string	Partition (1)			
19	day	string	Partition (2)			

Glue クローラー利用時の注意点

- □ HIVE_PARTITION_SCHEMA_MISMATCHエラーの対処法
- > 対処法1
- ・Glueクローラーの設定で 「既存パーティションのメタデータも全て更新する」を設定

✓ Update all new and existing partitions with metadata from the table

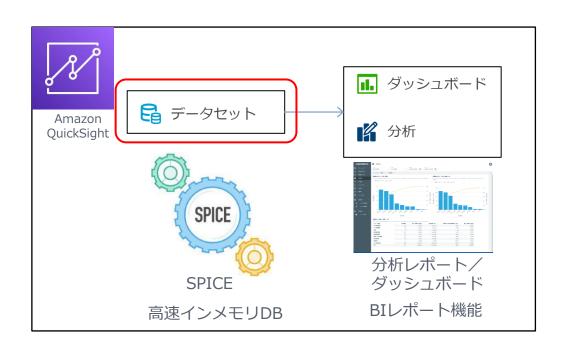
Partitions inherit metadata properties — such as their classification, input format, output format, SerDe information, and schema — from their parent table.

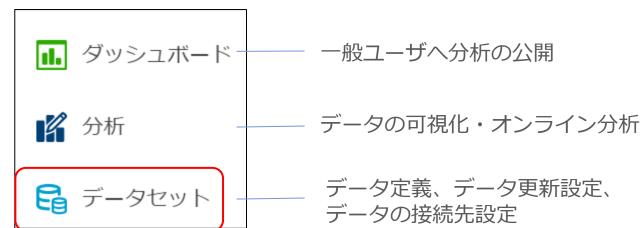

Glue クローラー利用時の注意点

- □HIVE PARTITION SCHEMA MISMATCHエラーの対処法
- > 対処法2
- 手動でテーブルを定義する

パーティション情報はMSCK REPAIR TABLE コマンドで更新する

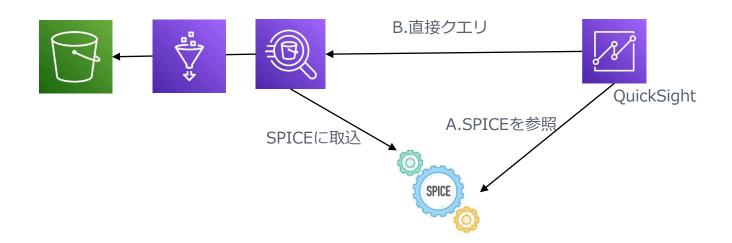
Athenaコンソール > MSCK REPAIR TABLE;


Style23


ポイント3 QuickSightデータセット参照方式

QuickSightデータセットの役割

□データセットの役割は主に分析・ダッシュボードが参照するデータの定義


役割

QuickSightデータセットの参照方式について

□2つの選択肢

A.QuickSightのインメモリDB「SPICE」に取込んで参照する B.直接クエリ

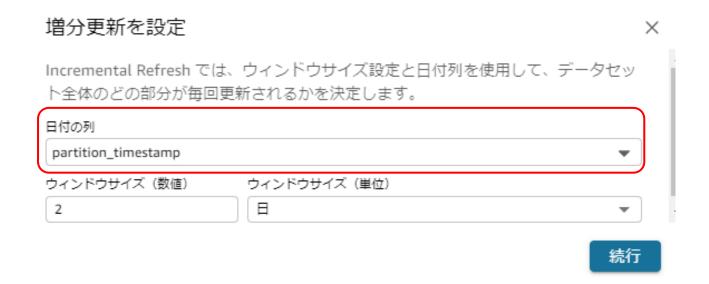
QuickSightデータセット参照方式選択のポイント

■SPICEか直接クエリか

	メリット	デメリット		
A.SPICE	大量データでも処理速度が速いデータソースへの負荷が少ない (取込時のみアクセス)	 データ更新間隔が最短15分 作成者ユーザ数×10G以上の容量を使う場合 追加料金がかかる 		
B.直接クエリ	リアルタイムなデータ参照が可能容量追加料金はなし	 データソースへの負荷が高くなり S3リクエストコストが大幅に上がる可能性がある 処理速度がSPICEに比べて遅い 結合データセットでは利用できない 		

S3+Athenaの直接クエリで失敗した話

導入前テスト時にS3のリクエスト料金が**通常の1,000倍近く**になってしまった


QuickSight発行クエリでパーティショニングが使えず **画面操作毎にS3の全件を抽出**してしまっていた

※過去の話である事や画面が複雑だったという事もあり、現在は仕様が変わっている可能性もあります。

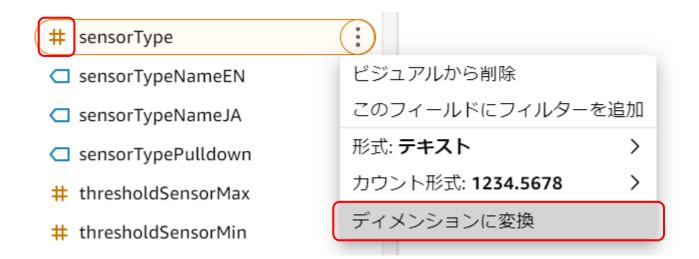
SPICE利用時のポイント

□増分更新設定の「日付の列」

> パーティションキーを結合した項目を日付型にして設定

date_parse(concat(year,'-',month,'-',day),'%Y-%m-%d') as partition_timestamp

データセット型定義のポイント


□自動で設定されたデータセット型はチェックする

データセット			データセット		
sensorID	sensorName	sensorType	sensorID	sensorName	sensorType
□ 文字列	□ 文字列	# 整数	□ 文字列	□ 文字列	□ 文字列
SEN-0020	汎用センサー (30	SEN-0020	汎用センサー (30
SEN-0010	汎用センサー (92	SEN-0010	汎用センサー(92
SEN-0010	汎用センサー (91	SEN-0010	汎用センサー(91
SEN-0010	汎用センサー (91	SEN-0010	汎用センサー(91

データセット型定義のポイント

□データセットの型が適切でない場合

まとめ

まとめ

- ■S3とQuickSightでBIシステムを構築する場合、Glue、Athenaを 使う構成が比較的始めやすい
- □Athenaパーティションを使う事でS3抽出コストを圧縮できる
- □データセットの直接クエリはリアルタイム分析できる反面、 リクエスト負荷が跳ね上がるといったデメリットもある
- □QuickSightのデータセットの型は自動判定のままとせず 適切な値を設定するとユーザの負荷を減らせる可能性がある

実績豊富なエンジニア集団の技術と開発ツールで「開発期間/コスト削減」「品質向上」を実現

株式会社スタイルズ

https://www.stylez.co.jp

東京都千代田区神田小川町1-2 風雲堂ビル6階

Tel:03-5244-4111

オープンソースソフトウェア推進